On the stability of compact pseudo-Kähler and neutral Calabi-Yau manifolds
نویسندگان
چکیده
We study the stability of compact pseudo-Kähler manifolds, i.e. complex manifolds X endowed with a symplectic form compatible structure X. When corresponding metric is positive-definite, Kähler and any sufficiently small deformation admits by well-known result Kodaira Spencer. prove that surfaces are also stable, but we show fails in every dimension n≥3. Similar results obtained for neutral Calabi-Yau manifolds. Finally, motivated question Streets Tian positive-definite case, construct pseudo-Hermitian-symplectic structures do not admit metric. Nous étudions la stabilité des variétés pseudo-kählériennes compactes, c-à-d complexes compactes lisses munies d'une forme symplectique avec complexe de Lorsque métrique correspondante est positive définie, kählérienne et toute déformation suffisamment petite admet une par un résultat bien connu démontrons que les sont, elles aussi, stables, mais nous montrons ensuite n'a lieu en aucune Des résultats similaires sont obtenus pour neutres kählériennes Calabi-Yau. Finalement, motivés dans le cas défini positif, construisons pseudo-Hermitiennes-symplectiques qui n'admettent pseudo-kählérienne.
منابع مشابه
On stability manifolds of Calabi-Yau surfaces
We prove some general statements on stability conditions of CalabiYau surfaces and discuss the stability manifold of the cotangent bundle of P. Our primary interest is in spherical objects.
متن کاملNon-compact Calabi–Yau Manifolds and Localized Gravity
We study localization of gravity in flat space in superstring theory. We find that an induced Einstein-Hilbert term can be generated only in four dimensions, when the bulk is a non-compact Calabi-Yau threefold with non-vanishing Euler number. The origin of this term is traced to R couplings in ten dimensions. Moreover, its size can be made much larger than the ten-dimensional gravitational Plan...
متن کاملGeneralized Calabi-Yau manifolds
A geometrical structure on even-dimensional manifolds is defined which generalizes the notion of a Calabi-Yau manifold and also a symplectic manifold. Such structures are of either odd or even type and can be transformed by the action of both diffeomorphisms and closed 2-forms. In the special case of six dimensions we characterize them as critical points of a natural variational problem on clos...
متن کاملGauge Theoretical Construction of Non-compact Calabi-Yau Manifolds
We construct the non-compact Calabi-Yau manifolds interpreted as the complex line bundles over the Hermitian symmetric spaces. These manifolds are the various generalizations of the complex line bundle over CP. Imposing an F-term constraint on the line bundle over CP, we obtain the line bundle over the complex quadric surface Q. On the other hand, when we promote the U(1) gauge symmetry in CP t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal de Mathématiques Pures et Appliquées
سال: 2021
ISSN: ['0021-7824', '1776-3371']
DOI: https://doi.org/10.1016/j.matpur.2020.09.001